

Introducing array-CGH into routine prenatal diagnosis practice: a prospective study on 1900 consecutive clinical cases

Francesco Fiorentino

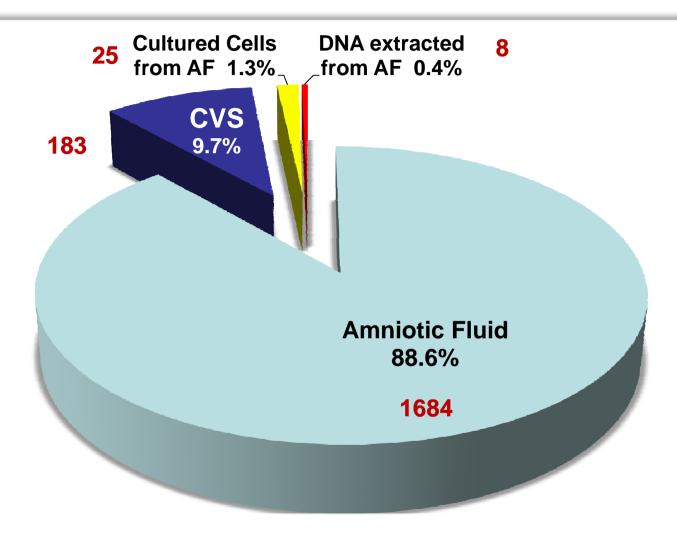
Lab Director

GENOMA - Molecular Genetics Laboratory

Rome - Italy

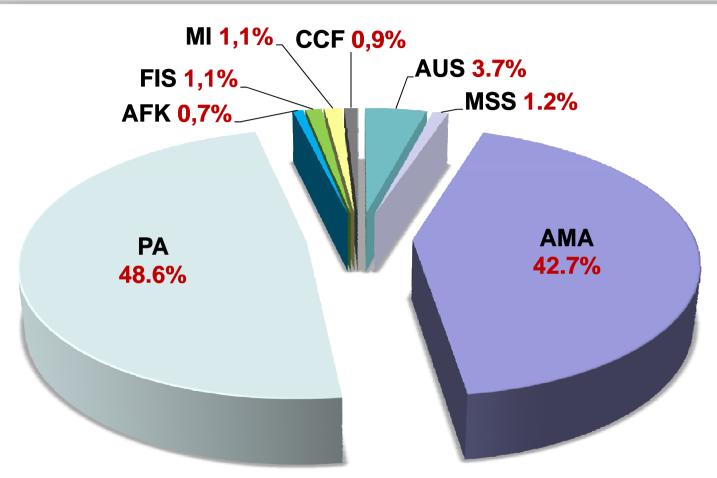
fiorentino@laboratoriogenoma.it

Array-CGH on prenatal samples


- aCGH is a useful assay for detection of common and submicroscopic chromosome abnormalities, widely used in the pediatric population as a **first-line test** in place of traditional karyotype analysis.
- While experience with aCGH in the pediatric patients is extensive, experience with its use for clinical **prenatal diagnosis** is still relatively limited.
- Published studies exploring aCGH usefulness on prenatal samples:
 - **retrospective** (Rickman et al., 2006; Le Caignec et al., 2005)
 - **prospective** (Sahoo et al., 2006; Shaffer et al., 2008; Kleeman et al. 2009; Coppinger et al., 2009; Van den Veyver et al., 2009; Maya et al., 2010)
- reduced cohort of samples processed (a total of 1112);
- Need of larger population-based **prospective trials** before aCGH can be recommended for <u>routine clinical use</u> in a prenatal diagnosis setting as a **first-line test** (ACOG Committee Opinion no. 446, 2009).

Aim of the study

- To perform a **prospective blind study**, comparing the results obtained using a BAC-based aCGH platform with those obtained from a standard G-banding karyotype.
- We aimed to assess the feasibility of offering aCGH in prenatal diagnosis on routine basis.
- Issues to address:
 - 1) aCGH **accuracy** in detection of common and submicroscopic chromosome abnormalities in prenatal samples;
 - if the technique improves the detection rate of genetic aberrations or, on the contrary, whether aCGH misses potential pathogenic chromosomal abnormalities, compared with conventional karyotyping;
 - 3) if there is an increase in results of unclear clinical relevance;
 - 4) whether aCGH should be applied to all prenatal samples as first-line test or its use should be limited to specific indications (e.g., in cases of abnormal ultrasound findings but normal karyotype).


Prenatal samples analysed

1900 prenatal samples (referred from October 2010 to September 2011)

Indication for prenatal diagnosis

AMA: advanced maternal age

AUS: abnormal ultrasound findings

PA: parental anxiety

AFK: a known abnormal fetal karyotype

MSS: Abnormal maternal serum screening test

FIS: Family history of a genetic condition or chr. abn.

CCF: Cell culture failure

MI: Multiple indications

DNA recovery from prenatal samples

- Second Potential limitations on the use of the aCGH assay on prenatal samples:
 - inability to isolate sufficient quantities of fetal DNA, especially from AF specimens;
 - suboptimal quality of DNA isolated from prenatal samples, due to the presence of dead cells, small degraded DNA fragments, and other unknown inhibiting factors.
- All prenatal samples that were processed in this study:
 - yielded sufficient DNA for successful aCGH analysis (99 ng/ml AF);
 - provided high-quality profiles with as little as 28 ng.

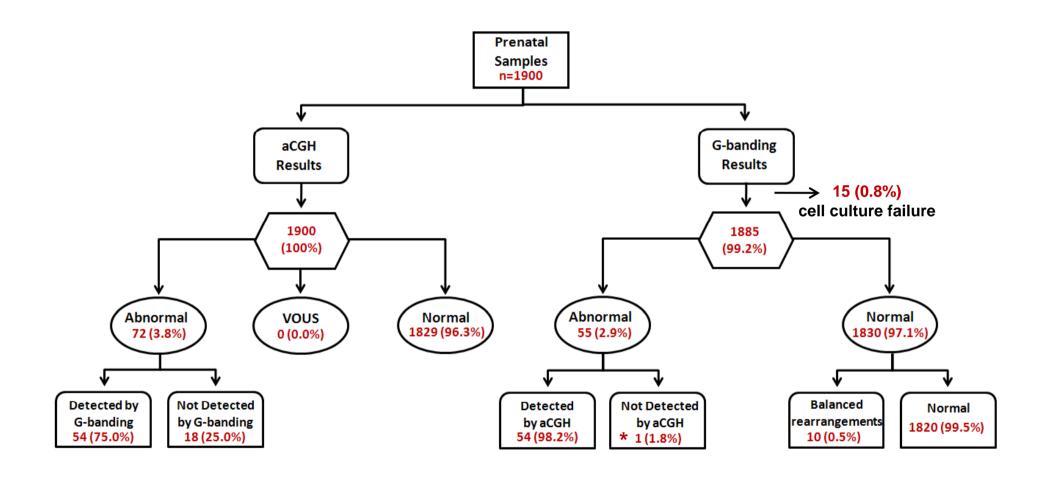
DNA recovery from prenatal samples

		Amnioti	c Fluid (AF)			
	Direct AF*		- Cultured	DNA from	CVS#	All samples
	ng/ml	ng/ml Total	amniocytes	uncultured	CVS	An samples
			•	amniocytes		
Average DNA quantity (+SD) in aCGH		264 (±109)	291 (±121)	188 (±65)	397 (±28)	276 (±111)
- Min		28	92	94	222	28
- Max		510	399	244	498	510
Average quantity (+SD) of extracted DNA	99 (±98)	496 (±492)	705 (±643)	255 (±89)	2894 (±2420)	712 (±1100)
-Min	7	36	120	123	306	36
- Max	1694	8482	1947	318	12807	12807

^{* 5} ml of Amniotic Fluid

^{#2} mg CVS

aCGH results turnaround time


aCGH using direct DNA extraction from prenatal samples also led to rapid turnaround time (2.5 working days), an important issue for prenatal diagnosis.

Chromosome abnormality type	Average turnaround time* (SD)	Min	Max
Normal	2.4 (±0.5)	2	3
Abnormal results with microscopic aberrations	2.2 (±0.4)	2	3
Abnormal results with submicroscopic aberrations	6.3 (±1.0)	5	7
Total	2.5 (±0.6)	2	7

^{*} Working days

Results

* In vitro artefact

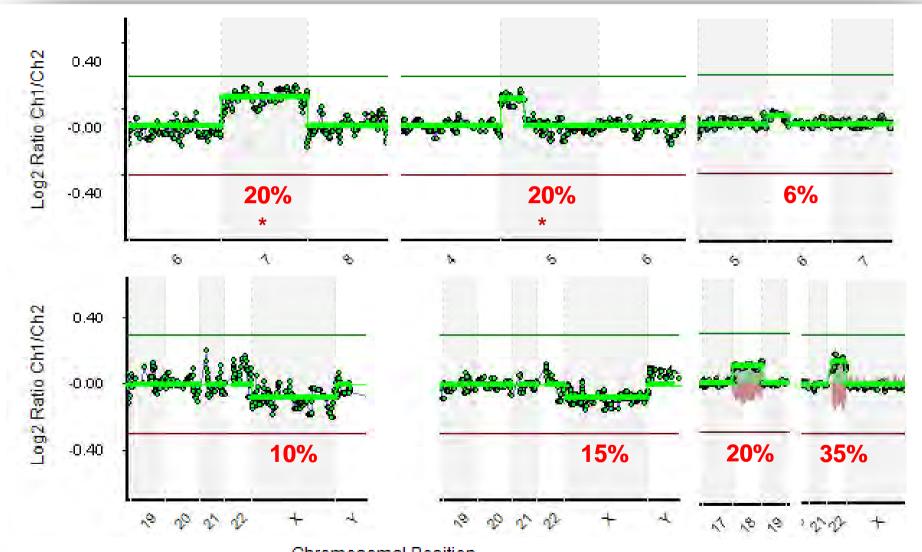
Array-CGH results according to the indication

			No. Samples with	aCGH detection rate		
Indication	No. Samples analysed	No. Samples with chr. abnormalities	chr. Abnormalities not detectable by conventional karyotyping	% whole samples	% abnormal results	
Abnormal ultrasound findings	70	22 (31.4%)	5	7.1%	22.7%	
Abnormal results of maternal serum screening tests	23	3 (13.0%)	0	0%	0%	
Advanced maternal age	811	28 (3.5%)	6	0.7%	21.4%	
Parental anxiety	924	18 (1.9%)	7	0.8%	38.9%	
Known abnormal fetal karyotype	14	1 (7.1%)	0	0%	0%	
FIS +CCF+MI	58	0 (0%)	0	0%	0%	
Totale	1900	72 (3.8%)	18	0.9%	25.0%	

Array-CGH results according to the indication

			No. Samples with	aCGH detection rate		
Indication	No. Samples analysed	No. Samples with chr. abnormalities	chr. Abnormalities not detectable by conventional karyotyping	% whole samples	% abnormal results	
Abnormal ultrasound findings	70	22 (31.4%)	5	7.1%	22.7%	
AMA + MSS + PA + others	1830	50 (2.7%)	13	0.7%	26.0%	
Totale	1900	72 (3.8%)	18	0.9%	25.0%	

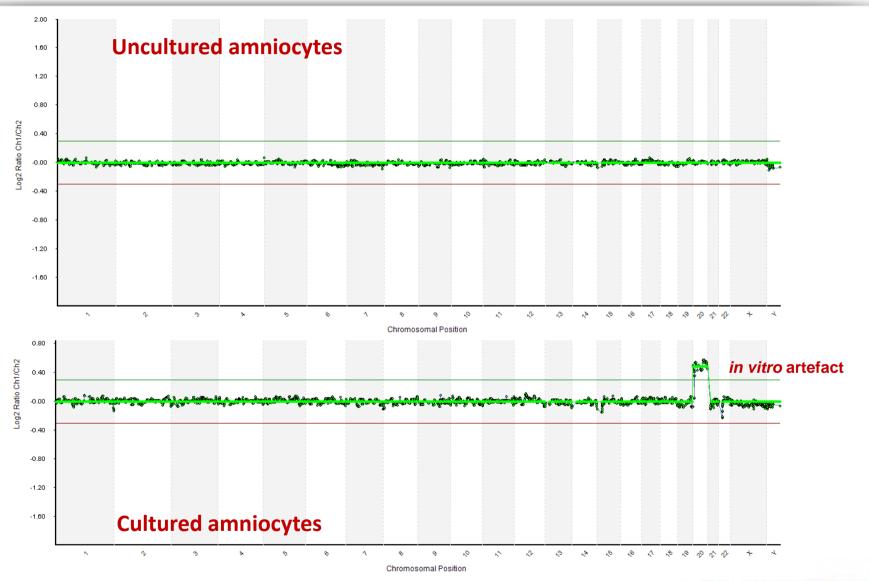
Results comparison between G-banding and array-CGH


Sample	No. of	Indication -	Chromosoma	al findings	-Concordance	Final diagnosis	
type	samples	indication -	G-banding results aCGH result		-Concordance	Filiai diagliosis	
AF-CVS	27	AMA, MSS, AUS, PA	47,XX,+21 or 47,XY,+21	47,XX,+21 or 47,XY,+21	Υ	Trisomy 21	
AF-CVS	8	AMA, MSS, AUS, PA	47,XX,+18 or 47,XY,+18	47,XX,+18 or 47,XY,+18	Υ	Trisomy 18	
AF-CVS	2	AMA - AUS	47,XX,+13	47,XX,+13	Υ	Trisomy 13	
AF	2	AMA	47,XYY	47,XYY	Υ	47,XYY	
AF	1	AMA	47,XXX	47,XXX	Υ	Trisomy X	
AF	1	PA	45,X	45,X	Υ	Monosomy X	
CVS	1	AUS	46, XY,18p-	46, XY,18p-	Υ	18p Deletion	
AF	1	AUS	46,XY,del(8)(p22p21.1)	46,XY,del(8)(p22p21.1)	Υ	Del. p22-p21.1	
AF	1	PA	46,XX,dup(15)(q21.2q25.2)	46,XX,dup(15)(q21.2q25.2)	Υ	Dup 15q21.2-q25.2	
CVS	1	AMA	46,XX (80%) /47,XX+7(20%)	47,XX+7 mosaic	Υ	Trisomy 7 mosaic	
AF	2	AMA	46,XX (80%) /45,X(15%) 46,XX (90%) /45,X(10%)	45,X mosaic	Υ	Monosomy X mosaic	
AF	1	AUS	46,XY (65%) /47,XXY(35%)	47,XXY mosaic	Υ	XXY Mosaic	
CVS	1	AMA	46,XX (80%) /47,XX+5p(20%)	47,XX+5p mosaic	Υ	Trisomy 5p mosai	
CVS	1	AUS	46,XY (80%) /47,XY+19(20%)	47,XY+19 mosaic	Υ		
AF	1	AUS	46,XX (94%) /47,XX+6p(6%)	47,XX+6p mosaic	Υ	Trisomy 6p mosaic	
cvs	1	MSS	46,XY(80%) /47,XY+18(20%)	47,XY+18 mosaic	Υ	Trisomy 18 mosaic	
AF	1	AUS	46,XX(65%)/47,XX+22(35%)	47,XY+22 mosaic	Υ	Trisomy 21 mosaic	
AF	1	PA	46,XX (16%) /47,XX+20(84%)	46, XX	N	46,XX [§]	
CA	1	AMA, AK	Suspected duplication 5q	46,XY,dup(15)(q24.2q26.3)	N	Dup.15q24.2-qtei	

§ in vitro artefact

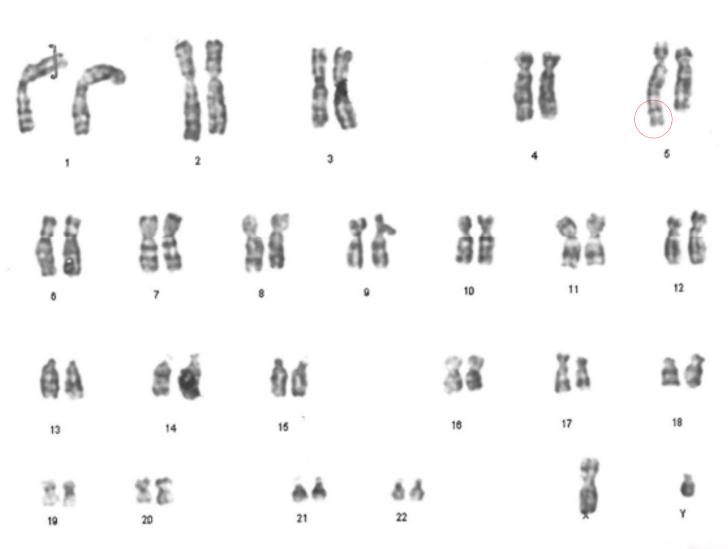
^{*} Normal after AF karyotyping

Examples of chromosomal mosaicism in prenatal samples

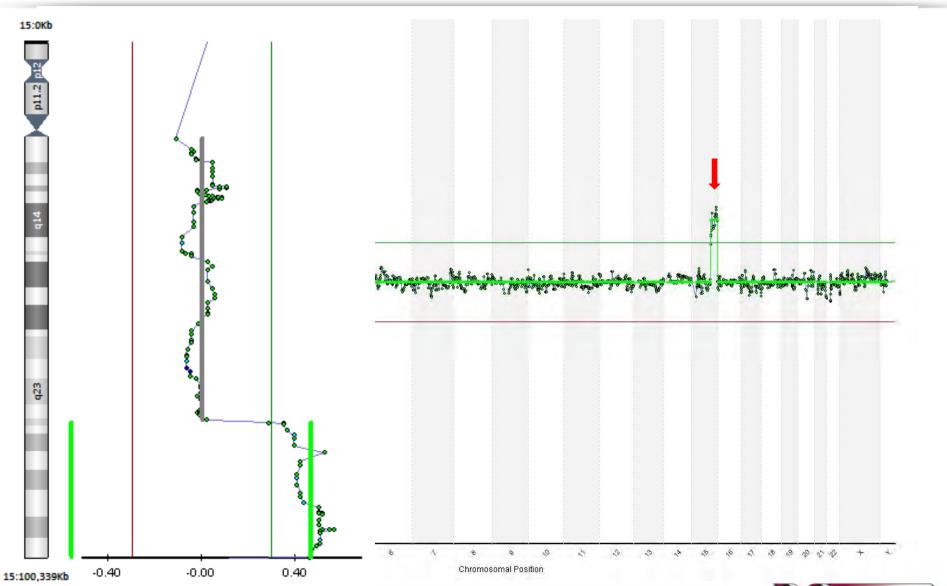


^{*} Normal after AF karyotyping

Chromosomal Position

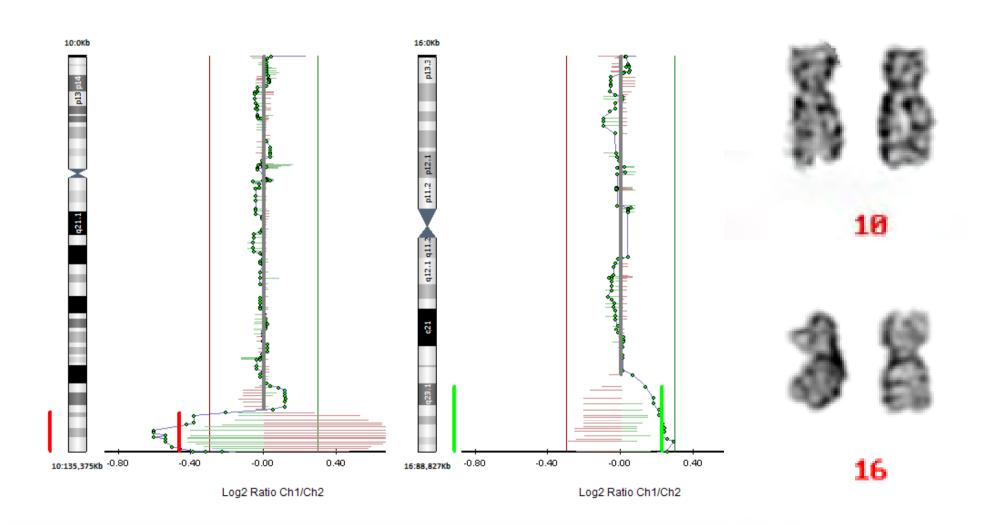


In vitro artefact in cultured amniocytes



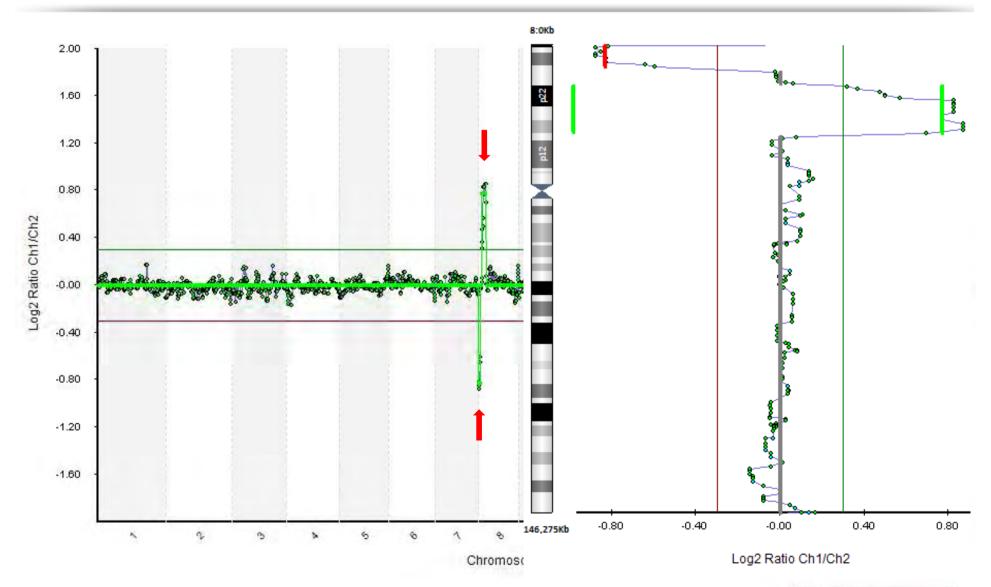
Karyotype from a fetus with a suspected partial dupl chr 5q

DNA (Amniotic fluid) from a fetus with a suspected partial dupl chr 5q, diagnosed as dup15(q24.1->qter) by array-CGH

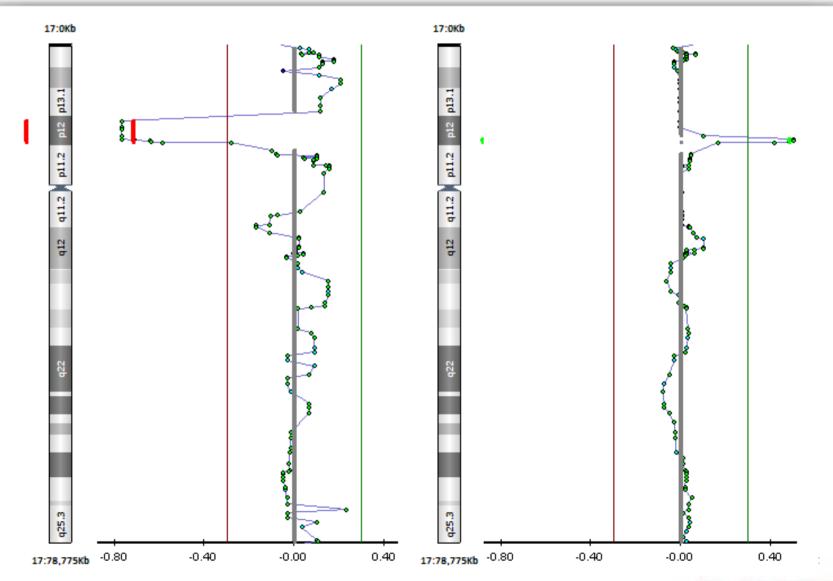


Clinically significant array-CGH findings in prenatal samples not detected by conventional karyotyping

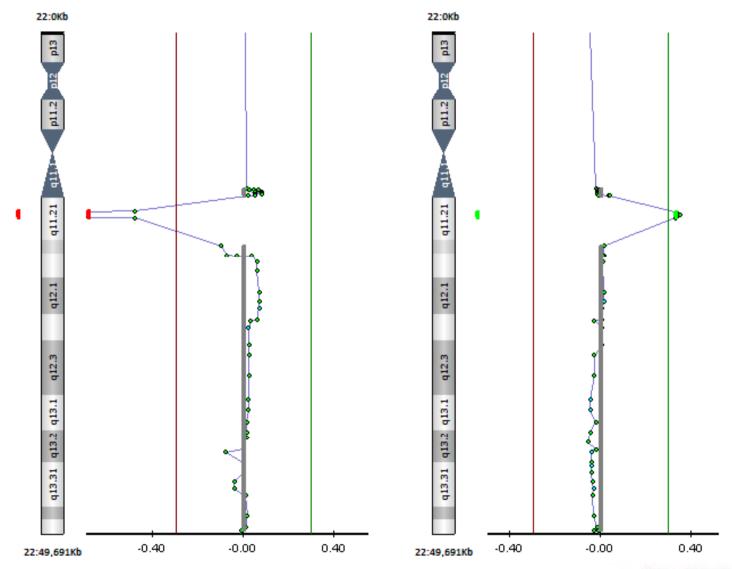
Comple	No of		200	H result		Parental	
Sample type	No. of samples	Indication -	Location	Gain / Loss	Size (Mb)	analysis	Interpretation
AF	1	AMA + AUS (single umbilical artery)	17p12	Loss	3.4	Inherited	Hereditary neuropathy (HNPP)
AF	3	AMA - PA	17p12	Gain	0.35-1.1	Inherited	Charcot-Marie-Tooth 1A (CMT1A)
AF	1	AMA + AUS (tetralogy of Fallot)	22q11.21	Loss	0.67	De novo	22q11.2 microdeletion (DIGEORGE)
AF	2	AMA	22q11.21	Gain	0.67	Inherited	22q11.2 microduplication syndrome
AF	1	AMA	15q13.1-q13.3	Loss	2.9	De novo	15q13.3 microdeletion syndrome
cvs	1	AMA + AUS (abnormal NT)	5q35.2-q35.3	Loss	1.7	De novo	SOTOS Syndrome
AF	1	PA	7q11.22-q11.23	Loss	1.2	De novo	WILLIAMS-BEUREN syndrome
AF	1	PA	15q11.2-q13.1	Loss	4.6	Inherited	15q11-q13 duplication syndrome
CVS	1	PA	6q14.3q15	Loss	5.2	De novo	Clinically significant CNV
AF	1	AMA	Xp11.3-p11.23	Loss	1.9	De novo	Clinically significant CNV
AF	1	PA	2p24.3-p24.2	Loss	2.5	De novo	Clinically significant CNV
CVS	1	PA	19q13.41q13.43	Gain	7.5	De novo	Clinically significant CNV
AF	1	PA	Xp21.2-p21.1	Gain	0.60	De novo	Duplication including exons 56-77 of the DMD gene
cvs	1	AMA + AUS (Cystic Hygroma)	10q26.12- 10q26.3	Loss	13.6	De novo	Clinically significant CNV
			16q23.1-q24.3	Gain	14.6		
cvs	1	AUS (abnormal NT)	8p23.3-p23.1 8p22-p21.1	Loss Gain	6.5 14.6	De novo	Inv dup del(8p)

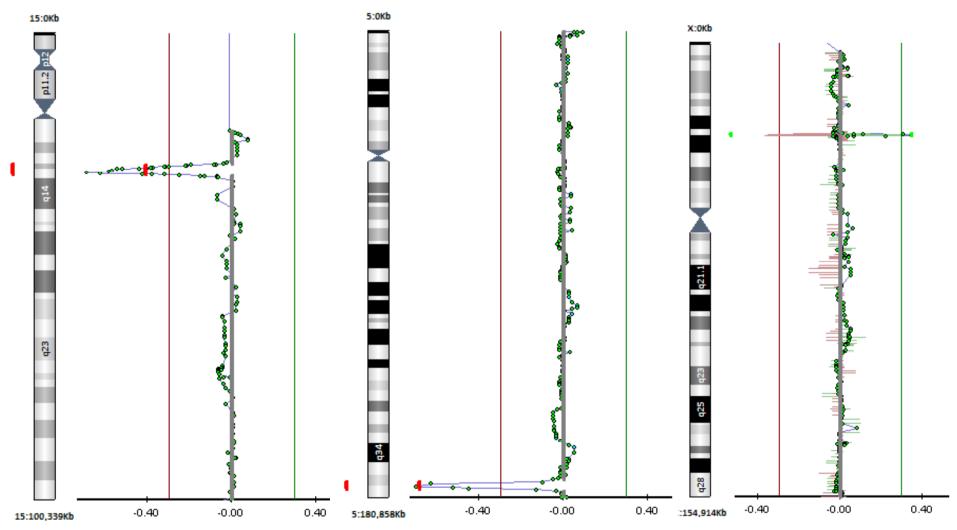


CVS with a de novo unbalanced translocation resulting in 13.6 Mb deletion 10q26.12-q26.3 and a 14.6 Mb duplication 16q23.1-q24.3 (ultrasound evidence: Cystic Hygroma)



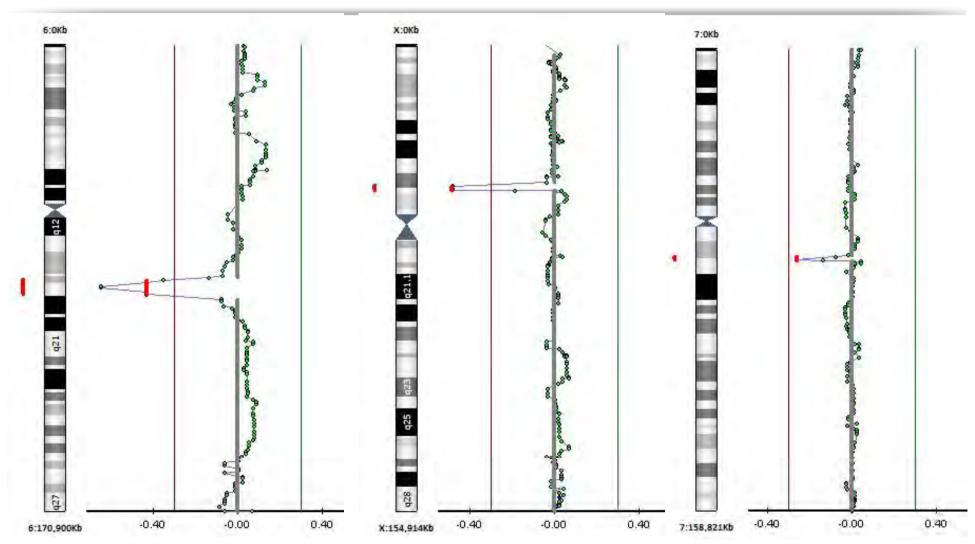
CVS with a *de novo* Inv dup del(8p) not detected by conventional Kariotype because of a cell culture failure (abnormal nuchal translucency)




Hereditary neuropathy with liability to pressure palsies (HNPP) disease and Charcot-Marie-Tooth neuropathy type 1 A (CMT1A)

22q11.2 microdeletion syndrome (DIGEORGE) and 22q11.2 microduplication syndrome

15q13.3 microdeletion syndrome Sotos Syndrome - Duchenne Muscular Dystrophy (DMD)

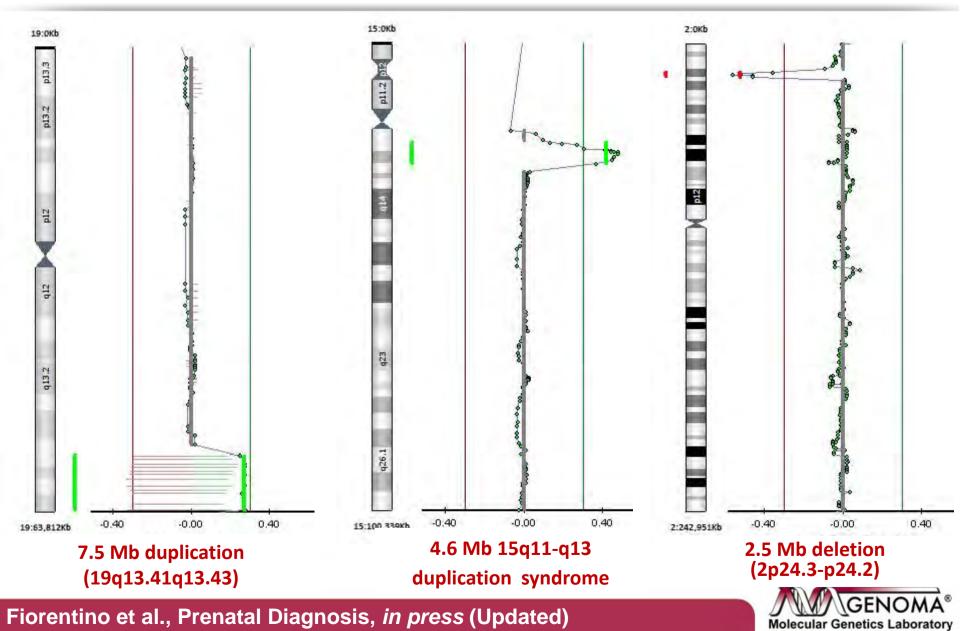

5.2 Mb deletion (15q13.3 microdeletion syndrome)

1.7 Mb deletion at 5q35.2-q35.3 (Sotos Syndrome)

0.6 Mb dup. DMD gene (ex. 56-77)

Molecular Genetics Laboratory

Other clinical significant CNVs


2.9 Mb deletion (6q14.3-q15)

1.9 Mb deletion (Xp11.3-p11.23)

1.9 Mb del. 7q11.22-q11.23 Williams-Beuren syndrome

Other clinical significant CNVs

Fiorentino et al., Prenatal Diagnosis, in press (Updated)

Results comparison with previous prospective studies

Chromosome abnormality type	Sahoo <i>et al.</i> (2006) $n = 98$ (%)§	Shaffer <i>et al.</i> (2008) $n = 151$ (%)§	Kleeman <i>et al.</i> (2009) $n = 24*+26^{\S}$ (%)	Copping (200) $n = 182$ $(\%)*$		Van de Veyver et al. (2009) $n = 190* +110$ (%)	Maya et al. (2010) n = 269 (%)*	Fiorentino et al. (2011) n = 1900 (%)	Combined $n = 3012$ (%)
No alteration	51 (52.0)	136 (90.1)	46 (92.0)	158 (86.8)	57 (91.9)	242 (80.7)	229 (85.1)	1581(83.3)	2500 (83.0)
Microscopic aberrations of clinical significance	5 (5.1)	0 (0.0)	0 (0.0)	2 (1.1)	0 (0.0)	13 (4.3)	4 (1.5)	54 (2.8)	78 (2.6)
Clinically significant submicroscopic aberrations	0 (0.0)	2 (1.3)	1 (2.0)	5 (2.7)	0 (0.0)	2 (0.7)	3 (1.1)	18 (0.9)	31 (1.0)
CNVs of Unclear significance	2 (2.0)	1 (0.7)	0 (0.0)	1 (0.5)	0 (0.0)	3 (1.0)	0 (0.0)	0 (0.0)	7 (0.2)
Benign CNVs	40 (40.8)	12 (7.9)	3 (6.0)	16 (8.8)	5 (8.1)	40 (13.3)	33 (12.0)	247 (13.0)	396 (13.1)

^{*} Whole-genome arrays; § Targeted arrays

Conclusions

- aCGH has revealed accurate in detection of common and submicroscopic chromosome abnormalities in prenatal samples;
 - S Detection of low level mosaicism (6%)
 - Correct scoring of abnormal cytogenetic findings
 - No in vitro artefact
- The technique increased the **sensitivity** and **accuracy** of the prenatal analysis, allowing identification of submicroscopic clinically significant imbalances that are not detectable by conventional karyotyping (**increased detection rate**)(~1%);
- No pathogenic chromosomal abnormalities were missed, compared with conventional karyotyping;
- No appreciable increase in results of unclear clinical significance
- Our findings provide a further evidence on the feasibility of introducing aCGH into routine prenatal diagnosis practice as first-line diagnostic test.

